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In this note a method is presented for quick implementation of configuration 
interaction (CI) calculations in molecules. A spin-free Hamiltonian for an N 
electron system in a spin state S, expressed in terms of the generators for the 
unitary group algebra, is diagonalized over orbital configurations forming a 
basis for the irreducible representation [21/2N-Sl 2s] of the permutation group 
SN. It has been found that the basic algebraic expressions necessary for the CI 
calculation involve a limited category of permutations. These have been 
displayed explicitly. 
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1. Introduction 

In recent years extensive investigations have been undertaken in Configuration 
Interaction (CI) studies of molecules using permutation and unitary group 
algebras [1-9]. Two of these are mainly computation oriented [1, 9]. The former 
[1] leads to compact expressions for the CI matrix elements of a spin-free Hamil- 
tonian in terms of the Irreducible Representation (IR) matrices of the permutation 
group S N. Ten basic expressions are provided from which any required CI matrix 
element can be evaluated. The only difficulty in using this approach for computa- 
tions is that the "matching" permutations have not been explicitly obtained and 
are difficult to handle. Further; the ordering of the orbitals entering a given 
configuration is not the conventional one. 

The second approach [9] is based on the unitary group algebra and diagonalizes a 
model spin-free Hamiltonian over the Gelfand-Zetlin basis [4-6, 9, 10]. The 
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computational methods involved in handling large systems using this approach 
are still in the process of development. 

In the present note an attempt has been made to combine the algebra of the Yo.ung 
idempotents of the permutation group with a model Hamiltonian expressed in 
terms of the generators of the unitary group algebra to obtain a basic category of 
expressions for the C! matrix elements. This procedure is found to lead to explicit 
forms for the matching permutations and enables easier programming. The 
method is developed in Sect. 2, and the results obtained are summarized in the 
Appendix. In Sect. 3 a brief discussion of the method is presented. 

2. The Present Approach 

Consider an N-electron system whose interactions are described by a spin-free 
Hamiltonian. Assume that a set of M orthonormal spatial one-electron orbitals 
have been provided, which span a linear space v~, 

v~t: {~bi(r)[i= 1 , . . .  M} (1) 

The symmetry group on the space is the unitary group U~t, whose elements define 
the mapping r V M ----3" U M. 

The spin-free part of the N-electron function is then realized as a tensorial product 
forming a basis for v~t| N 

UrM |  { ~ ( i ) ~  ~ i l i 2" ' "  iN l i l i2  " '"  i N =  1 , . . .  M} (2) 

where 

N 

~,~= H | (3) 
/ t=l  

The space v~@ N is decomposable into the non-equivalent IR's [2] of SN, the 
permutation group, on the electron coordinates. The (normalized) Young idem- 
potents providing the decomposition are [2, 3, 11, 12] 

/' r~). \ 1 / 2  

2 (;'. , :  . . . .  (4) 
V*:/  P~S~ 

where {F~,o(P)} are the matrix elements of the real orthogonal IR [2] of SN. 

Let S be a specific spin state of the system in which we are interested. This corres- 
ponds to the IR[2NI2-si 2s] occurring in the reduction of v~| N. The subset of 

r N vM| leading through Eq. (4) to a basis for such an IR cannot have an occupancy 
> 2 for any orbital qS, occurring in it. Further, the number of doubly occupied 
orbitals, say p, has to be such that p > ~ N - S .  The problem of generating these 
tensors is the standard one of configuration generation omitting spin projection. 
Any one of the standard programs can be adapted for this purpose. The character- 
istic feature of these tensors is that none of them are related through any permuta- 
tion P~S N. In view of this every tensor, once generated, can be so arranged as to 
associate an increasing order of the electron coordinates with an increasing order 
of one-electron orbital indices among doubly and singly occupied parts of this 
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tensor. Thus a typical member of this set may be represented as 

�9 (ip) = q~i1(1)q~i1(2),.. r 1)(a,p(Zp)O,p+ 1(2p + 1). . .  r (5) 

The set of all non-zero projections 

{0920,p~(ip) [ E2]=-E2N/2-S12S]; p ' p = l  . . . .  , f~} 

can then be used to obtain the matrix elements of the Hamiltonian as [3, 12], 

" I/N!'~ 1/2 
(,,,) - '  (6) 

The Hamiltonian of Eq. (6) can, in turn, be expressed in terms of the generators of 
uM, I t, m =  1, 2 . . . . .  M ) ,  as [-5], 

lr mC,m+} (7) 
lm klmn 

where the C~m can be defined in terms of the boson operators, az, acting on ~b/(r,) as 
[5, 7], 

N 

fire = 2 + @,am,. (8) 
# = 1  

In Eq. (7), f~m and gkt;,, are the standard one- and two-electron integrals. 
The C~, are symmetric in the electron coordinates and commute with every 
o~,p. Secondly, they act as shift operator replacing a r by (Ol(rk) 
symmetrically. Since the occupancy N m :1- 2, only N m = 2,1 are possible if C~m ~(i~) r 0 
for lvam. Thirdly, since c%,px does not admit a symmetrizer over more than two 
electron coordinates, N t = 1,0 are only possible. Thus we need only consider four 
distinct cases ofN~, Nm for the effect of C~m on q~(~) for ICm.  Finally, C~m can at 
most change the pairing index p of 4~(~p) to p' =p _+ 1. We can in this case readily 
show that consistency with the normalization used in Eq. (4) requires an additional 
renormalization factor x f2. Based on the above considerations the effect of 
CZm on 4~(~p) can be determined as follows: 

1. Nm=S,N,=O 

The effect of Czm in this case is only to alter the singly occupied portion of (b(~p). 
Hence we need number the electron coordinates of the singly occupied part alone as 
dAp+l(rl), qSip+2(r2),...; Oip+m(rm),..., ~bi,,_p(rN_2p ) and introduce a compact 
notation. Let 4~(iplm;,m ) represent explicitly the fact that the reference orbital 
qSp__ m ~ ~(i~)" Then, using the definition and the properties of C~m outlined previously, 
we have 

,% - -  . . t  

Clm(D p, O ] l~) (i p Im;rm)> - -  (D p, p I q])(i,pll;rm)) (9) 

In Eq. (9), ~(~} I~;,~) is related through a cyclic permutation, 

P =  (rlri_+ 1 . . .  rm; lr,,) 

of the electron coordinates, to 

(10) 

, N ' is the coordinate of cb(i'p i ~'~)~VM| " In Eq. (10) r I 
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~o~a+, in 4}~i, ), and the upper sign is to be used if r', < r m and the lower sign if r', > r=. 
Combining Eqs. (4), (9) and (10) we get 

r#>(P)oo#,~, I 'P.'~ I,;.~) 
p,, 

(11) 

2. Nm=N,=Z 

As in case 1 we again number only the electron coordinates of the singly occupied 
part of ~b(~p) and indicate explicitly the presence of ~Op+m(rm) and qSp+ l(r,) in it as 
~(~p I ,, m; r,. r~). Let us now introduce the permutation 

P = ( r 2 r 3 . . .  ? , ) ( r l r2 . . .  r~), (12) 

where ~, is the coordinate of q~p+, in ( r , r2 . . .  r,,)eb(~pl,,m; ..... ~. Then using the 
definition of  C~m and coo, pa given previously we obtain 

c,m@o I ~,.I , .~; .... ~>=~/2EFr  I~,~r,.,; ..... ~). (13) 
p "  

In Eq. (13) ~(5,1,,,; ..... } does not belong to the particular class of tensors chosen 
since it does not have the doubly occupied orbitals 2 p+, in the proper ordering. 
But there exists a simple identity valid for doubly occupied orbitals, which permits 
us to rearrange these orbitals without any additional effort. Let R,,  R2, R 3 and R 4 
be the electron coordinates of two adjacently placed doubly occupied orbitals r 2 
and 2 q5 ~.. +, belonging to ~ ) .  Then using a coset decomposition of the permutation 
group S 4 on these coordinates with respect to $2|  taken on the pairs R~, R 2 
and R3, R4, it is easy to show that, 

2 ogp,p(R,, R3)(R 2 R4) [ _ a (14) 

where (R~, R3) and (R2, R4) are transpositions. This identity permits us to move 
42+, successively to the left among the doubly occupied orbitals until it reaches its 
proper position without affecting the right side of Eq. (13) in any way. 

3. N,,=2, N,=O 

This case may be treated as the adjoint of 2 above in the context of evaluating the 
right side of Eq. (6). 

4. N,,=:, N,=I 

Let the reference function in this case be represented as 4~(irlm, m,Z;RmRm+l,r~ ). 
Using a coset decomposition of S 3 on Rm, R,, + ~, rl with respect to the subgroup 
S 2 on Rm, Rm+ 1 and the properties ofc@p [-3] we can readily establish the identity, 

o)ap,p[(Rm, rz) +(Rm+ 1, r,)] [e+(Rm, Rm+ 1)] = -c@o[-e + (Rm, R,,+ a)]. (15) 

Since the symmetrizer [e + (Rm, R,, + 1)] occurring on the right side of Eq. (15) leaves 
the reference function unchanged we can replace a Ct,,o)p,o [ 4~(ipl . . . .  t;Rm,Rm+ 1,r~)) 
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by the left side of Eq. (15). This replacement, combined with the identity given in 
Eq. (14) enables us to show that 

- - ~  rp,,p(P)ogo,p,, [~(rplZ, t,";g,, R . . . . .  .)> (16) Clm(Op'p [ ~(ip[ . . . .  l;Rm,R . . . . . .  ) > =  5" 3. 
p,, 

where P is a cyclic permutation. 

P =  (rzrl+_ 1 " ' "  r~n-T lyre), (17) 

with a structure similar to that of Eq. (10). 

Eqs. (10), (12) and (17) show that the evaluation of C~m involves only permutations 
over singly occupied orbitals. Even though the doubly occupied coordinate indices 
were introduced in the case 4 we find that the final result does not involve them. In 
the further development the coordinates R m, Rm+ 1 etc., will be omitted in indica-, 
ting the presence of ~b2m, etc., in cb(~p). 

Since the Hamiltonian of Eq. (7) is at most quadratic in CZm the above procedure 
can be readily extended to obtain the right side of Eq. (6). This also implies that 
only a limited number of basic inter-configuration matrix elements need be listed 
from which every matrix element can be determined. For computational con- 
venience we found 14 basic types of H~>(4~(i ~,); 4~(ip)) to be necessary instead of the 10 
suggested by Gallup and Norbeck [1]. Using the notation that the entries in the 
parentheses, (), 45(~vl), 4~(~,1) represent the only differing orbitals and their 
occupancies in the two reference configurations we have listed the basic expressions 
in the Appendix. 

As an illustration of the method of obtaining the expressions listed in the Appendix, 
we consider the case of Eq. (A11). Here, the initial and final states differ by two 
orbitals so that the part of Eq. (7) which contributes non-zero matrix elements is 
given by: 

H=gk~;",Cz,Ck" +gkt;,,,CzmCk," (18) 

Using the commutation relations among the generators, we may reexpress Eq. (18) 
as, 

H =  (gkZ;m,--gkZ;,")Cz,Ck,, +gk,.,m(C,mCk,,C".-- Cm,Cl,,Ckm). (19) 

We now have, 

C1.CkmC@ocbip(mZ ; krg; nr,) 
_ _  2 2 .  - - Cl,oop,ocI)ip(k , mrk; nr,) 

= --  (oap, o ~ i v ( k  2 ; mrk; lr.) 

F p,, p(P )~O p, p,,~i, (k , mr,,; lrz), (20) 
p,, 

where P is the permutation in Eq. (A11). Further, 

2 �9 2 Cl,.Ck,,C,,,oop,p~ip(m ; krk; n r , )=0 ,  (21) 
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since C,,,, increases the orbital occupancy of qS,,, in @~,, to 3. Finally, 

C ~ q~ 2 mnClmCkrn(,Op, p i v ( m  ; krk; nr,)  

: - -  CmnC lmf . Op , p ( I ) i p ( k  2 ; m r  k ; n r . )  

2 2 .  = -- Cm,e)p,ocI)i,(k , lrk;  nr,)  

= - -  o ) o , p ~ i p ( k  2 ; Irk; mr. )  

= - - E  2 2 2 F o,,o(PP(k,))og o,p,,cbi, (k  ; lrl; mr,,) (22) 
p,! 

with P~,) as the transposition (rk, r,) and P as defined earlier. 

Using the orthogonality of the orbitals, we obtain Eq. (A11) by combining the 
results of Eqs. (19)-(22) in Eq. (6). The other expressions given in the Appendix 
have been obtained using similar methods. 

3. Discussion 

The study of CI problems in molecules is a complex one, whichever approach one 
uses. In the unitary group approach, the use of permutations is avoided, but one is 
laced with the problem of generating the lexical Gelfand-Zetlin basis [8, 9]. 
Further, in'this approach, the matrix elements of non-elementary generators have 
to be handled only through the elementary ones. This could prove a difficult 
problem for large systems. On the other hand, the direct use of the permutation 
groups [3? requires that each C1 matrix element be handled individually. Gallup 
and Norbeck [1] got over this difficulty by classifying the CI matrix elements into 
10 basic categories. They did not, however, specify the explicit form of the permu- 
tations which are likely to be encountered. In this note the identities Eqs. (14) and 
(15) were combined with the use of the unitary group generators to obtain explicit 
forms for these permutations. The idea behind the use of the standard IR ' s  of S N 
combined with the use of the model Hamiltonian is the equivalence between the 
Gelfand-Zetlin basis and the standard Young-Yamanouchi basis for a given 
configuration [7, 13]. 

Part of the programming for CI calculations has been done based on the present 
approach. All the Hamiltonian matrix elements given in the Appendix have been 
programmed. In obtaining these we have used the Ruiner basis [14, 15] and 
subsequent Schmidt orthogonalization for general permutations and a recently 
developed method for handling general transpositions of S u [16]. An alternative 
is to generate the Yamanouchi-Kotani spin functions genealogically [17] or 
directly [18] and use them to handle the required permutations. We are currently 
investigating these alternatives. 

The time required to generate the Hamiltonian matrix elements compares favour- 
ably with other methods. The program and other details will be communicated in a 
forthcomir~g note. 
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Appendix 

Listed below are the 14 categories of CI matrix elements. ]-he entries in the paren- 
theses of 0r etc. list the reference orbitals and the electron coordinates. For 
doubly occupied orbitals the electron coordinates are not listed for the reason 
mentioned in the text. 

~, 

=~N,. ,+(Ni--1)Ji,+ 2'i Nj(Jij+AuKu) 6~ 
(j<i) 

+ 2' Nj(2-Ni)(2-Nyqfr )} (A1) 
J 

(j < i) 

where 

(1 --Ni)Ni+ (1 -Nj)Nj 
Aij= 4[2_(Ni+Nj_4) 2] 

and P(u) is the transposition of the coordinates of (a~p+,(ri), (~ip+j(rj)e O~p. 

Hp,o(i~+1(12), I~)ip(lrl;mrm)) 

2", 
(ir 

where P is given by Eq. (12). 
~ �9 Ho'p( i'~a~). Oi~(m~..)) 

= {f.. + ~',. 
(iCm) 

where P is given by Eq. (10). 

H p' p(Oi'p(mZ; trl), Oip(12;mr,,O) 

={--fm~-- Z' 
( i r  

1 } N'~il;im--2E Ni(Ni- 1)gig;m, r~o,p(P) 
i 

+x//~ 2' N,(2-Ni)g.;,.f~'p(PP(,,,.)), (A2) 
i 

(iCm) 

1 } N',giz; ,m - ~ ,  Ni(Ni- 1)gu;mi rr 
i 

+ Z' ~ (A3) Ni(2 - Ni)g m. , f  o, p(PP(~,.)), 
i 

(iCm) 

Nigi.,.iz--gl.,;u+�89 Z' Ni(Ni 1)g~;u} - r ~ , p ( e )  
i 

(/el) 

+ 2 '  gi(gi-2)g,,.;uFXo'p(P(e+P(i,o)) , 
i 

(iCm) 

(A4) 



7O 

where P is the same as that defining (A3). 

Hoa>(~bi~,(l~); ~i~m~)) =gU; mmap'O 
2 

H ~ , p ( ~ i , , +  ~(k~;,~); ~,,(m2; k,,;,~,)) = - X/2gk , ;  mmFep(P), 
where 

p = ( r z r 3  . . . r k ) ( r , r 2 r 3  . . . r , )  

is similar to Eq. (12). 
2 . 2 

H p' p( ~ i'p(k2;tr'O , ~) i p(12;mr=)) = --  gkk;mll 'p 'p(  P ), 

with P the same as that defining (A3). 
2 . 3. H p, v(~Oi'~+ ,(k~), CrPi;(l~,;m,.))= X / ~ & k ; l m F  p' , ( P ) ,  

where P is given by Eq. (12). 
3- . _ _  2 3.  

H p" p(~i'p(krk; It,), ~ip(mrm; nrn)) - -  gkl; mn Fp" o ( P )  + gkl; nmFp, p(PP(mn)),  

where 

P =  ( r y l  + , . . .  ~,){~,)(r'kr'~ + - ~ . . . r , , )  

with f, as the coordinate of qS~+. in 

(r'kr'k +_ * ' "  r m ) ~  ip(rar,~; nr,,) 

and 

( r'lr Z +- l " " " e n) (~) 

implying the omission of r~ from the cycle. 

C. R .  S a r m a  a n d  S. R e t t r u p  

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

H~'o(~ i '~+ ~(k2; zr~); ~i~(krk; m~,,; nr~)) 

= x/2gk,; ~.r~,~(P) +./2&~;.~rr (A 10) 

where 

P =  (rzr'l +- 1. . .  ~n)(r2r3.-- rk) (rxr2. . .  rm) 

with ?k as the coordinate of ~b~p+k in ( q r 2 . . .  rm)~p, ~, as the coordinate of ~b~p+, in 
(r2r3...  Y k ) ( r , r 2 . . .  r~)~ip, and ~ = r ' l + 2  for ~ i , p + a ( r ' l ) ~ i , p + x .  

2 3- , + Fp ,p(PP~kn))] ,  = - -  gkr m . r p ' p ( P )  + g u ;  . . ,  [ r p , , , ( P )  (A 11) 

where 

, , - ,  Zr, r, . . . r n ) .  P =  (rmrm+_ 1. �9 �9 rk)(~,)( l l+ 1 
2 

3- 3. 
= 2gkl ; m . F , , p ( P )  + 2&l ;.mFv,p(PP(,n.)) (A12) 

where 

P = ( r 4 r 5 . . .  r,)  (r3r4. . .  ~n) (r2r3" " " rk) ( r , r 2 " "  "rm), 
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with ?k as the coordinate of qS~e+_ k in ( r1%. . .  rm)~ip , ~,, as the coordinate of ~b~v+, in 
(rzr3. . .  Fk)(rlr2. . .  rn~)qSip, and ~ as the coordinate of q~iv+~ in 

(r3r4. . .  ~.)(r2r3 . . . rk ) ( r l r2 . . .  Ym)~ip. 

I-IXo,p(O~, + ,(~2; & ,,r;,) ; Oi~ (,.5; kr~; zr,; ,,.)) 

: - v /2& , ;  m.Fr ( P ) -  . , IS&,;  .,.I~,,(PP(k,)), (A 13) 
where 

P = ~  mr,,+ l .  . .~k)(rzr3. .?z)(rzrz .r.). 

= &,; , , . r~,p(P) + &k;,,,FZp'v(PP(ko), (A14) 

where 

P = (r~r~+_,.. .  ~k)(~)(r'.r'.+ 1 . . .  r,). 
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